ЗАРАБОТОК

пятница, 7 октября 2016 г.

Какой кабель лучше - гибкий или жесткий?

Какой кабель лучше - гибкий или жесткий?

При планировании проведения электромонтажных работ, в частности при необходимости выбора кабельно-проводниковой продукции, стает вопрос о выборе между гибким и жестким кабелем. В данной статей рассмотрим, какой кабель лучше: гибкий или жесткий, в зависимости от местных условий.
Для начала рассмотрим, что собой представляет гибкий и жесткий кабель. Гибкий кабель является многожильным, что обеспечивает ему достаточную гибкость. Жесткий кабель является моножильным, то есть его токопроводящая жила состоит из одного проводника.
Главная отличительная особенность гибкого кабеля от жесткого – это возможность его сгиба неограниченное количество раз, а также легкость изгиба.
Моножильный кабель не предназначен для частых изгибов, его можно изогнуть определенное количество раз, после чего его токопроводящая жила переломится. Например, новый медный жесткий кабель способен выдержать 80 изгибов, а алюминиевый - 12 изгибов. Со временем устойчивость к излому у моножильного кабеля снижается.
Исходя из этого, можно сделать вывод, что гибкий кабель выбирается при необходимости подключения подвижных электроприемников. Жесткому кабелю отдается предпочтение, если подключаемые к электросети электроприемники имеют фиксированное положение, то есть не подвергаются постоянным перемещениям.
Ниже рассмотрим особенности применения гибкого и жесткого кабеля в быту и в электроустановках.
Гибкий и жесткий кабель в домашней электропроводке
Электропроводка квартиры обеспечивает питание розеток, выключателей и осветительных устройств. Данные элементы имеют фиксированное положение, поэтому для монтажа домашней электропроводки отдают предпочтение жесткому кабелю. Но в данном случае не запрещено монтировать электропроводку и гибким кабелем.
Если гибкость кабеля в домашней электропроводке не имеет значения, то соответственно разницы в процессе эксплуатации гибкого и жесткого кабеля не будет. Но при выборе между гибким и жестким кабелем следует учитывать временные и материальные затраты на монтаж электропроводки.
Преимущество гибкого кабеля заключается в том, что его значительно проще укладывать в штробу, кабель-канал, а также непосредственно в распределительной коробке или щитке. Но в процессе монтажа электропроводки, в частности при подключении гибкого кабеля в распределительном щитке к защитным аппаратам и клеммникам, к выключателям, розеткам и осветительным устройствам необходимо производить оконцевание жил кабеля.
Оконцевание жил гибкого кабеля осуществляется специальными обжимными наконечниками или посредством их пропайки. Соответственно при выборе гибкого кабеля для монтажа электропроводки необходимо затратить дополнительное время на оконцевание жил и средства на приобретение обжимных наконечников, обжимного инструмента. Кроме того, гибкий кабель на порядок дороже жесткого.
Моножильный кабель в данном случае имеет преимущество, так как его жилы подключаются к вышеприведенным элементам электропроводки сразу после снятия изоляционного слоя, без дополнительной подготовки (обжимки наконечниками, пропайки), также при соединениях в распределительных коробках моножильный кабель значительно проще сварить или обжать гильзами.
Одним из преимуществ гибкого кабеля в домашней электропроводке является устойчивость к излому при частом переподключении провода при замене розеток, выключателя или светильника. Но, при условии выбора надежных розеток, выключателей, светильников, правильности выбора защитных аппаратов, а также при условии соблюдения правил эксплуатации электропроводки, жесткий кабель служит достаточно продолжительное время, так как переподключение кабеля и соответственно его изгибы производятся достаточно редко.
Гибкий и жесткий кабель в электроустановках
В электроустановках распределительных подстанций, промышленных предприятий для подключения стационарного оборудования, вспомогательных цепей различного назначения используется жесткий кабель. Гибкий кабель в электроустановках используется преимущественно при подключении цепей внутри распределительных щитков различного назначения, в шкафах релейной защиты и автоматики оборудования подстанций. Для этой цели может быть выбран и жесткий кабель.
В данном случае все зависит от конструктивного исполнения подключаемого элемента. Например, в шкафах релейной защиты и автоматики для подключения вторичных цепей к микропроцессорным терминалам защит используется гибкий провод, так как при подключении жесткого кабеля можно повредить зажимы устройства.
Гибкий кабель в цехах предприятия используется для подключения подвижного электроинструмента, сварочных аппаратов и другого электрооборудования, которое не имеет фиксированного расположения. Также гибкий кабель используется для питания отдельных подвижных узлов, имеющихся в конструкции того или иного элемента оборудования, например, в станке.
Жесткий, моножильный кабель имеет ограниченный радиус изгиба, поэтому при необходимости прокладки кабеля под углом, близким к прямому, отдают предпочтение гибкому кабелю, который может изгибаться под небольшим радиусом.
Следует отметить, что гибкость кабеля может быть разной. Существую семь классов гибкости кабеля. Чем выше класс, тем выше гибкость кабеля: первый класс гибкости соответствует моножильному кабелю, седьмой класс – самому гибкому. Что касается стоимости кабеля, то чем выше его класс гибкости, тем он дороже.


При мытье рук бьет током – как решить данную проблему

Пощипывание рук, в особенности ран, царапин в процессе их контакта с водой при мытье рук не представляют опасности для человека. Но легкие и, казалось бы, безобидные пощипывания, могут вмиг превратиться в сильный удар электрическим током. Пощипывания можно рассматривать как сигнал к тревоге, а именно к поиску источника утечки тока - поврежденного электроприбора иди поврежденного участка домашней электропроводки.
Причиной пощипывания в большинстве случаев является повреждение или неправильное подключение к электрической сети бытового электроприбора, который в процессе работы имеет связь с водой, трубопроводами квартиры (дома). Это в первую очередь стиральная машина, накопительный водонагреватель (бойлер), проточный водонагреватель, посудомоечная машина.
При монтаже электропроводки рекомендуется особое внимание уделить степени защиты корпусов элементов проводки от воздействия влаги. Очень часто данной рекомендацией пренебрегают и устанавливают розетку, выключатель, светильник или другой элемент домашней электрики, не имеющие достаточной защиты от влаги, которая должна быть в том или ином случае.
Например, в ванной комнате была установлена незащищенная от влаги розетка. Такая розетка, в случае попадания влаги может давать утечку и пощипывать человека в случае прикосновения к влажной стене или пользования водой из крана. При прямом контакте мокрыми руками к незащищенной розетке высока вероятность удара человека электрическим током.
В данном случае для предотвращения возникновения утечек тока необходимо устанавливать штепсельные розетки, выключатели освещения, корпуса распределительных коробок, светильники и другие элементы электропроводки с надежной защитой корпуса от попадания влаги. Подробеее о особенностчях установки и использования розеток во влажных помещениях подробно рассказано здесь: Розетки в ванной комнате
При выборе данных элементов следует обращать внимания на их конструктивные особенности, так как не всегда заявленная степень защиты корпуса соответствует фактической. Необходимо визуально убедиться в том, что корпус розетки, выключателя или другого элемента достаточно герметичен, а их токоведущие части надежно изолированы.
Также следует помнить о мерах безопасности при эксплуатации электроприборов в ванной комнате или в другом помещении с повышенной влажностью. Например, наличие защиты корпуса розетки от прямого попадания струи воды не говорит о том, что розетка должна постоянно подвергаться прямому воздействию влаги. Данную розетку необходимо устанавливать в таком месте, в котором вероятность прямого попадания брызг воды минимальная.
Что делать, если при мытье рук бьет токомНаиболее оптимальный в плане безопасности вариант – свести к минимуму количество устанавливаемых в помещении с повышенной влажностью элементов электропроводки. Например, выключатель освещения ванной комнаты лучше установить за ее пределами. Если возникла необходимость ответвления линии электропроводки или подключения электроприбора напрямую к электропроводке, то лучше предусмотреть установку распределительной коробки за пределами помещения с повышенной влажностью.
При поиске источника утечки тока в ванной или другой комнате следует обратить внимание, какие еще бытовые потребители электрического тока могут давать утечку. Одним из таких приборов является теплый пол.
Причиной возникновения утечек, приводящих в свою очередь к пощипыванию человека в помещении при контакте с влагой, может быть повреждение жил нагревательного кабеля теплого пола или нарушения правил подключения к электрической сети электроприборов в помещении с повышенным уровнем влажности, о чем упоминалось выше.
Если в последнем случае решить проблему пощипывания можно путем подключения теплого пола к электрической сети в соответствии с нормами, то в случае повреждения изоляции нагревательных элементов теплого пола потребуется замена теплого пола в комнате. Устранить пробой изоляции нагревательных элементов теплого пола не получится, так как они скрыты стяжкой, при удалении которой теплый пол будет абсолютно непригоден для дальнейшей эксплуатации.
Как и упоминалось в начале статьи, наличие утечек от бытовых электроприборов очень опасно для жизни человека, так как легкое пощипывание может резко превратиться в поражение человека током утечки смертельной величины. Поэтому не следует надеяться, что найдя поврежденный элемент, вы будете надежно защищены.
Повреждение электропроводки или эксплуатируемых в быту электроприборов может произойти повторно, в самый неподходящий момент. Следовательно, необходимо предусмотреть требуемые меры безопасности от возможных утечек тока через поврежденную изоляцию электроприборов или проводки.
Одна из основных мер безопасности - установка в квартирный распределительный щиток устройства защитного отключения или комбинированного электрического аппарата – дифференциального автомата.
Данные защитные аппараты при достижении порогового значения тока утечки мгновенно отключат участок электрической сети с повреждением, которое привело к возникновению утечки тока. УЗО или дифавтомат необходимо устанавливать на те линии проводки, которые питают наиболее опасные с точки зрения поражения электрическим током электроприборы.
Также не следует забывать о том, что УЗО, как и любое электротехническое устройство, может выйти из строя и не сработать в нужное время. Поэтому следует предусмотреть в электрическом распределительном щитке вводной защитный аппарат, который выполняет функцию резервирующего защитного устройства.
Помимо защитных аппаратов для осуществления безопасности людей при эксплуатации домашней электрики и включаемых в сеть электроприборов необходимо наличие защитного заземления в электропроводке.
Также бывают случаи, когда домашняя электропроводка и используемые электроприборы находятся в нормальном техническом состоянии, но при этом пощипывания при мытье рук не прекращаются.
В данном случае причиной данного явления может быть повреждение в электропроводке в соседней квартире, целенаправленное использование жителями дома трубопроводов в качестве заземлителя. В данном случае необходимо обратиться в сбытовую организацию с целью поиска и ликвидации подобных нарушений. 


Как выбрать перфоратор, какая модель лучше

Как выбрать перфоратор, какая модель лучше

Любой электрик периодически сталкивается с необходимостью укладки электропроводки внутри бетонных или кирпичных стен, которые приходится высверливать или штробить. Выполнять такие задачи удобнее специально предназначенным перфоратором.
Чтобы удачно подобрать его модель для работы предлагаем ознакомиться с особенностями различных конструкций и перечнем технических решений их исполнения, воплощенных в многообразных конструкциях перфораторов, выпускаемых современными производителями.
Назначение
Перфоратор создается для изготовления отверстий в бетонных, кирпичных, каменных строительных конструкциях повышенной прочности методом нанесения механических ударов по насадке, совершающей комбинированное поступательно-вращательное движение.
Дополнительными задачами перфоратора являются:
1. высверливание отверстий в различных материалах за счет функции дрели;
2. нанесение продолжительной серии осевых ударов в режиме отбойного молотка.
Как и всем современным инструментам ему придается возможность многофункциональности. Используя различный комплекс специальных насадок, им можно:
  • сверлить отверстия;
  • приготавливать различные строительные растворы;
  • чистить поверхности металла, камня, бетона;
  • выполнять шлифовку;
  • производить многие другие работы.
Как работает насадка перфоратора
Инструменты, создающие отверстия в стенах строительных конструкций, включая перфораторы, создаются с разными техническими решениями.
Как работает ударная дрель
Конструктивное отличие от обычной дрели заключается в том, что она при работе наносит множество мелких осевых биений за счет использования механического шестеренчатого устройства.
Верхняя часть ударной конструкции состоит из неподвижно установленной шестерни со сложным рельефом плоскости соприкосновения, а нижняя, получающая вращение от электродвигателя, соединена с патроном рабочего органа. На ее соприкасающемся контактном конце смонтирована такая же рельефная шестерня, которая может:
1. отделяться от верхней части вводом металлического фиксатора, как показано на картинке;
2. или прижиматься поверхностями.
Если фиксатор введен, то он исключает соприкосновение рельефных механизмов: дрель работает в режиме плавного сверления без совершения осевых ударов. Когда задается режим биений патрона извлечением фиксатора, то энергия электродвигателя проворачивает подвижную шестеренку по впадинам и выступам неподвижной и за счет этого патрону придаются осевые движения.
При этом пользователю требуется давить на корпус прибора и упирать его в высверливаемую деталь, чтобы создать контакт дисков с рельефными поверхностями.
Как наносится удар перфоратором
Для придания осевых перемещений рабочему органу используется два вида механизмов привода:
1. электромеханические;
2. электропневматические.
Ударное действие первого метода основано на взаимодействии двух катушек, образующих противоположно направленные электромагнитные поля, которые создаются в разные моменты времени и действуют на сердечник, заставляя его циклически перемещаться вперед-назад. При этом он совершает удары по торцевой площадке рабочего органа.
Чаще всего в конструкциях современных перфораторов используется привод, работающий по электропневматическому методу. У него осевое перемещение рабочего органа происходит за счет нанесения прямых ударов поршня по торцу головки. При этом используется одна из двух технологий:
1. механизм «пьяного подшипника»;
2. конструкция ударного кривошипа.
В обеих конструкциях поршень перемещается внутри ограниченного цилиндром воздушного пространства между наносящим ему удар молотком-толкателем и торцом рабочего органа. При этом воздух сжимается поршнем и передает энергию резким ударом.
После этого поршень отскакивает, а толкатель, возвращаясь назад, быстро создает перед ним дополнительное разрежение.
В зависимости от конструкции механизмов поршень с разной частотой совершает поступательно-возвратные движения и передает энергию толкателя на рабочий орган без жесткой механической связи электрического привода с исполнительным механизмом (через промежуточную воздушную среду).
За счет этого приема ударное воздействие рабочего органа требует меньшего приложения мощности, чем у электродрели. Поэтому перфораторы работают эффективнее, потребляя меньше энергии в режиме долбления поверхности.
Пневматические ударные механизмы в целях безопасности обычно оснащаются функцией отключения на холостом ходу, когда рабочий орган не прижат к обрабатываемой поверхности.
Перфораторы с качающим подшипником
В этих конструкциях используется передача движения толкателю поршня за счет механизма качающего «пьяного» подшипника, получающего энергию вращения от электродвигателя и преобразующего ее в осевые удары.
Для этого на приводную втулку, надетую на рычаг, установлен опорный подшипник рабочего вала. Внутри внешнего и внутреннего колец обоймы установлена защитная крышка, закрывающая стальные шарики — тела качания.
На валу расположена проточка, работающая как внутреннее кольцо подшипника. За счет этого технического приема рычаг совершает колебания только в осевом направлении, совершая толчки поршня.
Количество возвратно-поступательных колебаний насадки прямо пропорционально зависит от скорости вращения ротора двигателя, а на амплитуду движения влияют:
  • конструкция максимального угла наклона подшипника к оси вала;
  • длина используемого рычага.

воскресенье, 2 октября 2016 г.

Однофазное подключение трехфазного двигателя

Однофазное подключение трехфазного двигателя


Асинхронные электродвигатели широко применяются в промышленности благодаря относительной простоте конструкции, хорошим рабочим характеристикам, удобству управления.
Подобные устройства часто попадают в руки домашнего мастера и он, пользуясь знанием основ электротехники, подключает такой электродвигатель для работы от однофазной сети 220 вольт. Чаще всего его используют для наждака, обработки древесины, измельчения зерен и выполнения других простых работ.
Даже на отдельных промышленных станках и механизмах с приводами встречаются образцы различных двигателей, способных работать от одной или трех фаз.

Чаще всего у них используется конденсаторный запуск, как наиболее простой и приемлемый, хотя это не единственный способ, известный большинству грамотных электриков.
Принцип работы трехфазного двигателя
Промышленные асинхронные электрические устройства систем 0,4 кВ выпускаются с тремя обмотками статора. К ним прикладываются напряжения, сдвинутые по углу на 120 градусов и вызывающие токи аналогичной формы.
Для запуска электродвигателя токи направляют таким образом, чтобы они создали суммарное вращающееся электромагнитное поле, оптимально воздействующее на ротор.
Конструкция статора, используемая для этих целей, представлена:
1. корпусом;
2. магнитопроводом сердечника с уложенными в него тремя обмотками;
3. клеммными выводами.


В обычном исполнении изолированные провода обмоток собраны по схеме звезды за счет установки перемычек между винтами клемм. Кроме этого способа еще существует подключение, называемое треугольником.
В обоих случаях обмоткам назначено направление: начало и конец, связанное со способом монтажа — навивки при изготовлении.
Обмотки нумеруются арабскими цифрами 1, 2, 3. Их концы обозначаются К1, К2, К3, а начала — Н1, Н2, Н3. У отдельных типов двигателей подобный способ маркировки может быть изменен, например, С1, С2, С3 и С4, С5, С6 или другими символами либо вообще не применяться.
Правильно нанесенная маркировка упрощает подключение проводов питания. При создании на обмотках симметричной схемы расположения напряжений, обеспечивается создание номинальных токов, осуществляющих оптимальную работу электродвигателя. В этом случае их форма в обмотках полностью соответствует подводимому напряжению, повторяет его без каких-либо искажений.
Естественно, следует понимать, что это чисто теоретическое заявление, ибо на практике токи преодолевают различные сопротивления, незначительно отклоняются.
Наглядному восприятию происходящих процессов помогает изображение векторных величин на комплексной плоскости. Для трехфазного двигателя токи в обмотках, создаваемые приложенным симметричным напряжением, изображаются следующим образом.
При питании электродвигателя системой напряжений с тремя равномерно разнесенными по углу и одинаковыми по величине векторами в обмотках протекают такие же симметричные токи.
Каждый из них образует электромагнитное поле, сила индукции которого наводит в обмотке ротора собственное магнитное поле. В результате сложного взаимодействия трех полей статора с полем ротора создается вращательное движение последнего, обеспечивается создание максимальной механической мощности, вращающей ротор.
Принципы подключения однофазного напряжения к трехфазному двигателю
Для полноценного подключения к трем одинаковым статорным обмоткам, разнесенных по углу на 120 градусов, два вектора напряжения отсутствуют, имеется только один из них.
Можно подать его всего в одну обмотку и заставить ротор вращаться. Но, эффективно использовать такой двигатель не получится. Он будет обладать очень малой выходной мощностью на валу.
Поэтому возникает задача подключения этой фазы таким образом, чтобы она в разных обмотках создавала симметричную систему токов. Другими словами, нужен преобразователь напряжения однофазной сети в трехфазную. Подобная задача решается разными методами.
Если отбросить сложные схемы современных инверторных установок, то можно реализовать следующие распространенные способы:
1. использование конденсаторного запуска;
2. применение дросселей, индуктивных сопротивлений;
3. создание различных направлений токов в обмотках;
 4. комбинированный способ с выравниванием сопротивлений фаз для образования одинаковых амплитуд у токов.
Кратко разберем эти принципы.
Отклонение тока при прохождении через емкость
Наиболее широко практикуется конденсаторный запуск, позволяющий отклонять ток в одной из обмоток за счет подключения емкостного сопротивления, когда создается опережение тока от вектора приложенного напряжения на 90 градусов.
В качестве конденсаторов обычно используются металлобумажные конструкции серий МБГО, МБГП, КБГ и подобные. Электролиты не приспособлены для пропускания переменного тока, быстро взрываются, а схемы, предусматривающие их использование, отличаются сложностью, низкой надежностью.

Типовые схемы подключения трехфазного двигателя к однофазной сети

Типовые схемы подключения трехфазного двигателя к однофазной сети

Из всех разработанных многочисленными исследователями методов подключения асинхронного электродвигателя на практике чаще всего применяется два, называемые способами:
1. звезды;
2. треугольника.
Оба они используют конденсаторный запуск, отличающийся доступной элементной базой.
Название каждого метода дано по способу подключения обмоток статора в сеть. Их схема уже была показана здесь: Однофазное подключение трехфазного двигателя. Узнать же, как они собраны в конкретном двигателе, можно с помощью таблички, смонтированной на корпусе.
Обычно даже на старых моделях можно разобрать способ соединения обмоток и напряжение сети, на которые они созданы. Такой информации можно доверять, если двигатель уже опробован в работе и к нему нет претензий. Но, даже в этом случае необходимо провести электрические замеры.
Как проверить схему подключения обмоток электродвигателя
Начнем с плохого варианта выполнения монтажа статорных обмоток, когда их концы на заводе не обозначены, а сборка нуля для схемы звезды выполнена внутри корпуса и выведена одной общей жилой. Придется разбирать корпус, снимать крышки, демонтировать внутреннее соединение, разводить провода.
Определение фаз статора
После того. как концы проводов разъединены используется омметр. Один его щуп подсоединяют к произвольному проводу, а другим находят его окончание по показаниям омметра. Также поступают с остальными фазами. Не следует забывать их маркировать или помечать каким-то доступным способом.
Прозвонка обмоток омметром
Вместо омметра можно использовать самодельные прозвонки, состоящие из батарейки с лампочкой и проводами.
Определение полярности обмоток
Для нахождения одинакового расположенных концов рекомендуется воспользоваться одним из двух способов:
1. подачей импульса постоянного тока;
2. подключением источника переменного напряжения.
Оба этих варианта работают за счет подачи электрического напряжения на одну обмотку и трансформации его в остальные через магнитопровод сердечника.

Метод проверки с помощью батарейки и вольтметра постоянного тока
Принцип работы показан на картинке.
Определение полярности обмоток импульсом постоянного напряжения
На клеммы одной из обмоток следует подключить чувствительный вольтметр постоянного тока, способный реагировать на появление импульса. К другой обмотке кратковременно прикладывают напряжение определённым полюсом, например, плюсом.
В момент подачи импульса наблюдают показание вольтметра: возможно отклонение стрелки в положительную или отрицательную сторону. Движение ее к плюсу означает совпадение полярностей обеих обмоток (размыкание контакта — стрелка к минусу). Процедуру повторяют для третьей обмотки.
Сменой обмотки для подключения батарейки осуществляют контрольную проверку правильности маркировки.
Метод проверки переменным напряжением
Две произвольных обмотки подключают параллельно соединенными концами к вольтметру, а на третью подают напряжение от трансформатора. Контролируют показания вольтметра: при совпадении полярностей обеих обмоток на вольтметре будет отображаться значение источника ЭДС, а при нарушении — ноль.
Сменой положения трансформатора на другую обмотку и переключением цепей вольтметра осуществляют проверку полярности третьей фазы, а затем выполняют контрольный замер.
Определение полярности обмоток подачей пониженного напряжения
О том, как определить неисправности в обмотке смотрите здесь: Как проверить состояние обмотки асинхронного двигателя
Схема запуска «звезда»
Она обеспечивается схемой подключения обмоток, использующей три разных цепи — фазы, объединенные общей точкой, нейтралью.
Схему собирают после проверки полярности подключения обмоток статора внутри двигателя. Двухфазное напряжение 220 вольт фазой через автоматический выключатель подают на начала двух разных обмоток. К одной из них в разрыв врезают конденсаторы: пусковые и рабочие.
Ноль сети питания подводится на третий вывод звезды.
Схема подключения трехфазного двигателя звезда
Емкость рабочих конденсаторов подбирают по эмпирической формуле:
С раб = (2800·I)/U.
Для схемы пуска эту величину увеличивают в 2÷3 раза. В процессе работы двигателя под нагрузкой следует проверить соотношения токов в обмотках замерами и провести корректировку рабочих конденсаторов применительно к усредненным нагрузкам привода. Иначе будет происходить перегрев оборудования, ведущий к старению изоляции.
Подключение электродвигателя в работу удобно выполнять через конструкцию специального выключателя, который раньше производился для стиральных машин с центрифугой типа «Рига».
Специальный выключатель
Здесь уже встроена пара замыкающих контактов, которые одновременно подают напряжение на две параллельно подключенные схемы нажатием на кнопку Пуск. Причем при отпускании этой кнопки одна цепочка разрывается. Этот контакт и используют для пусковой цепочки.
Общее отключение напряжения производят нажатием на кнопку Стоп.
Схема запуска «треугольник»
Она повторяет алгоритм предыдущей схемы в части запуска, но отличается способом подключения обмоток статора.
Схема подключения трехфазного двигателя треугольник
Токи, протекающие в них, превышают значения для цепей звезды. Рабочие конденсаторы требуют больших номиналов. Их рассчитывают по следующему выражению:
С раб = (4800·I)/U.
Правильность подбора конденсаторов тоже определяют по соотношению токов в обмотках статора контрольными замерами под нагрузкой.
Бравый Алексей Семенович